use crate::{ text_render::ContentType, CacheKey, FontSystem, GlyphDetails, GlyphToRender, GpuCacheStatus, Params, Resolution, SwashCache, }; use etagere::{size2, Allocation, BucketedAtlasAllocator}; use lru::LruCache; use std::{borrow::Cow, collections::HashSet, mem::size_of, num::NonZeroU64, sync::Arc}; use wgpu::{ BindGroup, BindGroupDescriptor, BindGroupEntry, BindGroupLayout, BindGroupLayoutEntry, BindingResource, BindingType, BlendState, Buffer, BufferBindingType, BufferDescriptor, BufferUsages, ColorTargetState, ColorWrites, DepthStencilState, Device, Extent3d, FilterMode, FragmentState, ImageCopyTexture, ImageDataLayout, MultisampleState, Origin3d, PipelineLayout, PipelineLayoutDescriptor, PrimitiveState, Queue, RenderPipeline, RenderPipelineDescriptor, Sampler, SamplerBindingType, SamplerDescriptor, ShaderModule, ShaderModuleDescriptor, ShaderSource, ShaderStages, Texture, TextureAspect, TextureDescriptor, TextureDimension, TextureFormat, TextureSampleType, TextureUsages, TextureView, TextureViewDescriptor, TextureViewDimension, VertexFormat, VertexState, }; #[allow(dead_code)] pub(crate) struct InnerAtlas { pub kind: Kind, pub texture: Texture, pub texture_view: TextureView, pub packer: BucketedAtlasAllocator, pub size: u32, pub glyph_cache: LruCache, pub glyphs_in_use: HashSet, pub max_texture_dimension_2d: u32, } impl InnerAtlas { const INITIAL_SIZE: u32 = 256; fn new(device: &Device, _queue: &Queue, kind: Kind) -> Self { let max_texture_dimension_2d = device.limits().max_texture_dimension_2d; let size = Self::INITIAL_SIZE.min(max_texture_dimension_2d); let packer = BucketedAtlasAllocator::new(size2(size as i32, size as i32)); // Create a texture to use for our atlas let texture = device.create_texture(&TextureDescriptor { label: Some("glyphon atlas"), size: Extent3d { width: size, height: size, depth_or_array_layers: 1, }, mip_level_count: 1, sample_count: 1, dimension: TextureDimension::D2, format: kind.texture_format(), usage: TextureUsages::TEXTURE_BINDING | TextureUsages::COPY_DST, view_formats: &[], }); let texture_view = texture.create_view(&TextureViewDescriptor::default()); let glyph_cache = LruCache::unbounded(); let glyphs_in_use = HashSet::new(); Self { kind, texture, texture_view, packer, size, glyph_cache, glyphs_in_use, max_texture_dimension_2d, } } pub(crate) fn try_allocate(&mut self, width: usize, height: usize) -> Option { let size = size2(width as i32, height as i32); loop { let allocation = self.packer.allocate(size); if allocation.is_some() { return allocation; } // Try to free least recently used allocation let (mut key, mut value) = self.glyph_cache.peek_lru()?; // Find a glyph with an actual size while value.atlas_id.is_none() { // All sized glyphs are in use, cache is full if self.glyphs_in_use.contains(key) { return None; } let _ = self.glyph_cache.pop_lru(); (key, value) = self.glyph_cache.peek_lru()?; } // All sized glyphs are in use, cache is full if self.glyphs_in_use.contains(key) { return None; } let (_, value) = self.glyph_cache.pop_lru().unwrap(); self.packer.deallocate(value.atlas_id.unwrap()); } } pub fn num_channels(&self) -> usize { self.kind.num_channels() } pub(crate) fn promote(&mut self, glyph: CacheKey) { self.glyph_cache.promote(&glyph); self.glyphs_in_use.insert(glyph); } pub(crate) fn put(&mut self, glyph: CacheKey, details: GlyphDetails) { self.glyph_cache.put(glyph, details); self.glyphs_in_use.insert(glyph); } pub(crate) fn grow( &mut self, device: &wgpu::Device, queue: &wgpu::Queue, font_system: &mut FontSystem, cache: &mut SwashCache, ) -> bool { if self.size >= self.max_texture_dimension_2d { return false; } // Grow each dimension by a factor of 2. The growth factor was chosen to match the growth // factor of `Vec`.` const GROWTH_FACTOR: u32 = 2; let new_size = (self.size * GROWTH_FACTOR).min(self.max_texture_dimension_2d); self.packer.grow(size2(new_size as i32, new_size as i32)); // Create a texture to use for our atlas self.texture = device.create_texture(&TextureDescriptor { label: Some("glyphon atlas"), size: Extent3d { width: new_size, height: new_size, depth_or_array_layers: 1, }, mip_level_count: 1, sample_count: 1, dimension: TextureDimension::D2, format: self.kind.texture_format(), usage: TextureUsages::TEXTURE_BINDING | TextureUsages::COPY_DST, view_formats: &[], }); // Re-upload glyphs for (&cache_key, glyph) in &self.glyph_cache { let (x, y) = match glyph.gpu_cache { GpuCacheStatus::InAtlas { x, y, .. } => (x, y), GpuCacheStatus::SkipRasterization => continue, }; let image = cache.get_image_uncached(font_system, cache_key).unwrap(); let width = image.placement.width as usize; let height = image.placement.height as usize; queue.write_texture( ImageCopyTexture { texture: &self.texture, mip_level: 0, origin: Origin3d { x: x as u32, y: y as u32, z: 0, }, aspect: TextureAspect::All, }, &image.data, ImageDataLayout { offset: 0, bytes_per_row: Some(width as u32 * self.kind.num_channels() as u32), rows_per_image: None, }, Extent3d { width: width as u32, height: height as u32, depth_or_array_layers: 1, }, ); } self.texture_view = self.texture.create_view(&TextureViewDescriptor::default()); self.size = new_size; true } fn trim(&mut self) { self.glyphs_in_use.clear(); } } #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub(crate) enum Kind { Mask, Color { srgb: bool }, } impl Kind { fn num_channels(self) -> usize { match self { Kind::Mask => 1, Kind::Color { .. } => 4, } } fn texture_format(self) -> wgpu::TextureFormat { match self { Kind::Mask => TextureFormat::R8Unorm, Kind::Color { srgb } => { if srgb { TextureFormat::Rgba8UnormSrgb } else { TextureFormat::Rgba8Unorm } } } } } /// The color mode of an [`Atlas`]. #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub enum ColorMode { /// Accurate color management. /// /// This mode will use a proper sRGB texture for colored glyphs. This will /// produce physically accurate color blending when rendering. Accurate, /// Web color management. /// /// This mode reproduces the color management strategy used in the Web and /// implemented by browsers. /// /// This entails storing glyphs colored using the sRGB color space in a /// linear RGB texture. Blending will not be physically accurate, but will /// produce the same results as most UI toolkits. /// /// This mode should be used to render to a linear RGB texture containing /// sRGB colors. Web, } /// An atlas containing a cache of rasterized glyphs that can be rendered. pub struct TextAtlas { pub(crate) params: Params, pub(crate) params_buffer: Buffer, pub(crate) cached_pipelines: Vec<( MultisampleState, Option, Arc, )>, pub(crate) bind_group: Arc, pub(crate) bind_group_layout: BindGroupLayout, pub(crate) sampler: Sampler, pub(crate) color_atlas: InnerAtlas, pub(crate) mask_atlas: InnerAtlas, pub(crate) pipeline_layout: PipelineLayout, pub(crate) shader: ShaderModule, pub(crate) vertex_buffers: [wgpu::VertexBufferLayout<'static>; 1], pub(crate) format: TextureFormat, pub(crate) color_mode: ColorMode, } impl TextAtlas { /// Creates a new [`TextAtlas`]. pub fn new(device: &Device, queue: &Queue, format: TextureFormat) -> Self { Self::with_color_mode(device, queue, format, ColorMode::Accurate) } /// Creates a new [`TextAtlas`] with the given [`ColorMode`]. pub fn with_color_mode( device: &Device, queue: &Queue, format: TextureFormat, color_mode: ColorMode, ) -> Self { let sampler = device.create_sampler(&SamplerDescriptor { label: Some("glyphon sampler"), min_filter: FilterMode::Nearest, mag_filter: FilterMode::Nearest, mipmap_filter: FilterMode::Nearest, lod_min_clamp: 0f32, lod_max_clamp: 0f32, ..Default::default() }); // Create a render pipeline to use for rendering later let shader = device.create_shader_module(ShaderModuleDescriptor { label: Some("glyphon shader"), source: ShaderSource::Wgsl(Cow::Borrowed(include_str!("shader.wgsl"))), }); let vertex_buffers = [wgpu::VertexBufferLayout { array_stride: size_of::() as wgpu::BufferAddress, step_mode: wgpu::VertexStepMode::Vertex, attributes: &[ wgpu::VertexAttribute { format: VertexFormat::Sint32x2, offset: 0, shader_location: 0, }, wgpu::VertexAttribute { format: VertexFormat::Uint32, offset: size_of::() as u64 * 2, shader_location: 1, }, wgpu::VertexAttribute { format: VertexFormat::Uint32, offset: size_of::() as u64 * 3, shader_location: 2, }, wgpu::VertexAttribute { format: VertexFormat::Uint32, offset: size_of::() as u64 * 4, shader_location: 3, }, wgpu::VertexAttribute { format: VertexFormat::Uint32, offset: size_of::() as u64 * 5, shader_location: 4, }, wgpu::VertexAttribute { format: VertexFormat::Float32, offset: size_of::() as u64 * 6, shader_location: 5, }, ], }]; let bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { entries: &[ BindGroupLayoutEntry { binding: 0, visibility: ShaderStages::VERTEX, ty: BindingType::Buffer { ty: BufferBindingType::Uniform, has_dynamic_offset: false, min_binding_size: NonZeroU64::new(size_of::() as u64), }, count: None, }, BindGroupLayoutEntry { binding: 1, visibility: ShaderStages::VERTEX | ShaderStages::FRAGMENT, ty: BindingType::Texture { multisampled: false, view_dimension: TextureViewDimension::D2, sample_type: TextureSampleType::Float { filterable: true }, }, count: None, }, BindGroupLayoutEntry { binding: 2, visibility: ShaderStages::VERTEX | ShaderStages::FRAGMENT, ty: BindingType::Texture { multisampled: false, view_dimension: TextureViewDimension::D2, sample_type: TextureSampleType::Float { filterable: true }, }, count: None, }, BindGroupLayoutEntry { binding: 3, visibility: ShaderStages::FRAGMENT, ty: BindingType::Sampler(SamplerBindingType::Filtering), count: None, }, ], label: Some("glyphon bind group layout"), }); let params = Params { screen_resolution: Resolution { width: 0, height: 0, }, _pad: [0, 0], }; let params_buffer = device.create_buffer(&BufferDescriptor { label: Some("glyphon params"), size: size_of::() as u64, usage: BufferUsages::UNIFORM | BufferUsages::COPY_DST, mapped_at_creation: false, }); let color_atlas = InnerAtlas::new( device, queue, Kind::Color { srgb: match color_mode { ColorMode::Accurate => true, ColorMode::Web => false, }, }, ); let mask_atlas = InnerAtlas::new(device, queue, Kind::Mask); let bind_group = Arc::new(device.create_bind_group(&BindGroupDescriptor { layout: &bind_group_layout, entries: &[ BindGroupEntry { binding: 0, resource: params_buffer.as_entire_binding(), }, BindGroupEntry { binding: 1, resource: BindingResource::TextureView(&color_atlas.texture_view), }, BindGroupEntry { binding: 2, resource: BindingResource::TextureView(&mask_atlas.texture_view), }, BindGroupEntry { binding: 3, resource: BindingResource::Sampler(&sampler), }, ], label: Some("glyphon bind group"), })); let pipeline_layout = device.create_pipeline_layout(&PipelineLayoutDescriptor { label: None, bind_group_layouts: &[&bind_group_layout], push_constant_ranges: &[], }); Self { params, params_buffer, cached_pipelines: Vec::new(), bind_group, bind_group_layout, sampler, color_atlas, mask_atlas, pipeline_layout, shader, vertex_buffers, format, color_mode, } } pub fn trim(&mut self) { self.mask_atlas.trim(); self.color_atlas.trim(); } pub(crate) fn grow( &mut self, device: &wgpu::Device, queue: &wgpu::Queue, font_system: &mut FontSystem, cache: &mut SwashCache, content_type: ContentType, ) -> bool { let did_grow = match content_type { ContentType::Mask => self.mask_atlas.grow(device, queue, font_system, cache), ContentType::Color => self.color_atlas.grow(device, queue, font_system, cache), }; if did_grow { self.rebind(device); } did_grow } pub(crate) fn glyph(&self, glyph: &CacheKey) -> Option<&GlyphDetails> { self.mask_atlas .glyph_cache .peek(glyph) .or_else(|| self.color_atlas.glyph_cache.peek(glyph)) } pub(crate) fn inner_for_content_mut(&mut self, content_type: ContentType) -> &mut InnerAtlas { match content_type { ContentType::Color => &mut self.color_atlas, ContentType::Mask => &mut self.mask_atlas, } } pub(crate) fn get_or_create_pipeline( &mut self, device: &Device, multisample: MultisampleState, depth_stencil: Option, ) -> Arc { self.cached_pipelines .iter() .find(|(ms, ds, _)| ms == &multisample && ds == &depth_stencil) .map(|(_, _, p)| Arc::clone(p)) .unwrap_or_else(|| { let pipeline = Arc::new(device.create_render_pipeline(&RenderPipelineDescriptor { label: Some("glyphon pipeline"), layout: Some(&self.pipeline_layout), vertex: VertexState { module: &self.shader, entry_point: "vs_main", buffers: &self.vertex_buffers, }, fragment: Some(FragmentState { module: &self.shader, entry_point: "fs_main", targets: &[Some(ColorTargetState { format: self.format, blend: Some(BlendState::ALPHA_BLENDING), write_mask: ColorWrites::default(), })], }), primitive: PrimitiveState::default(), depth_stencil: depth_stencil.clone(), multisample, multiview: None, })); self.cached_pipelines .push((multisample, depth_stencil, pipeline.clone())); pipeline }) } fn rebind(&mut self, device: &wgpu::Device) { self.bind_group = Arc::new(device.create_bind_group(&BindGroupDescriptor { layout: &self.bind_group_layout, entries: &[ BindGroupEntry { binding: 0, resource: self.params_buffer.as_entire_binding(), }, BindGroupEntry { binding: 1, resource: BindingResource::TextureView(&self.color_atlas.texture_view), }, BindGroupEntry { binding: 2, resource: BindingResource::TextureView(&self.mask_atlas.texture_view), }, BindGroupEntry { binding: 3, resource: BindingResource::Sampler(&self.sampler), }, ], label: Some("glyphon bind group"), })); } }